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T H E  E F F E C T I V E N E S S  OF U S I N G  O N E  V A R I A N T  OF 
T H E  F I N I T E - E L E M E N T  M E T H O D  FOR S O L V I N G  
N O N L I N E A R  N O N S T A T I O N A R Y  H E A T - C O N D U C T I O N  
P R O B L E M S  

V. A. Dutka UDC 539.27 

It is established that the use of a previously proposed variant of the finite-element method for solving 

nonlinear nonstationary heat-conduction problems is efficient (in the sense of computer time expenditures) 

when the half-width of the band fl of the resulting matrix in the system of linear algebraic equations does 

not exceed a certain value of tic,. As a result of a numerical experiment for an axially symmetric case we 

obtain flcr ~ 47, which demonstrates the effectiveness of this variant of the finite-element method for solving 
a wide range of practical problems of heat-conduction theory. 

It is a known fact [1 ] that in numerical solution of nonlinear nonstationary heat-conduction problems by 

the finite-element method most of the computer time r is spent in the formation of a system of linear algebraic 

equations rform and its solution rsol (i.e., 1: = rform + rsol). To reduce the computer time, various procedures are 

used: finite elements with a higher order of approximation [2 ]; schemes with a smaller number of integration points 
over the element space [3 ]; and effective methods for solving the resulting system of linear algebraic equations [ 1, 

4,51. 
Below we will show that with certain restrictions on the width of the band of the matrix in the system of 

linear algebraic equations when using the variant of the finite-element method proposed in [6 ], it is also possible 

to reduce computer time as compared with the traditional scheme of the finite-element method. First we will present 

the relations that are required to compare computer time expenditures for the traditional finite-element method 

and the indicated variant of the finite-element method. 

The solution of the heat-conduction problem 

OT 
c ( T ) p ( T ) - - ~ = d i v ( ; t ( T ) g r a d r )  + f ( r , r , t ) ,  r E  V,  t > O ;  

T(r,  0 ) = T i n ( r ) ,  r E V ;  T ( r , t ) = ~ ( r , t ) ,  r E X 1 ,  t > 0 ;  

OT 
2 - ~ n ( r , t ) = - q ( T , r , t  ) ,  r E X  2, t > 0 ;  (1) 

OT 
2 ~ (r, t) = a (T, r, t) (Tree d (r, t) - T (r, t)), r ~ E 3 , t > 0 ,  

when using the traditional finite-element method in combination with the Galerkin method and approximation of 

the temperature T within the limits of each time interval [tn, tn+l ] (n = 0, 1, 2 . . . .  ): 

T = ~ T  ( ' + 1 )  + ( I  - w)  T ~'0 (0  _< co _< 1) (2)  

is reduced to a solution, in each time layer, of a system of nonlinear algebraic equations 

V. N. Bakul' Institute of Superhard Materials, National Academy of Sciences of Ukraine, Kiev, Ukraine. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 70, No. 2, pp. 284-289, March-April, 1997. Original article 

submitted March 3, 1995. 

1062-0125/97/7002-0283518.00 �9 1997 Plenum Publishing Corporation 283 



t,,l{ l = = o, .... ) 

for the vector of the nodal values of the temperature {T} (n+l) at time t ffi tn+ 1. In this case, the matrix [A ] and the 

vector on the right-hand side {R} of system (3) are determined by the formulas 

[AI = [C]/Atn+ l + co ([KI + [HI) ,  

where Atn+ 1 ffi In+ 1 - t n (n -- 0, 1, 2 .. . .  ) is the time step. The elements of the matrices of heat capacity [C ], thermal 

conductivity [K], and allowance for the third-kind boundary conditions [HI and vectors {a}, {q}, and {f} are 

calculated by ensembling the magnitudes of the volumetric integrals 

f c(7)p(T)N sN idV, f 2(7 3 g r a d N  sgradN idV, 
V (e) V(e) 

(4) 

e =  1 , 2 ,  M, s , i=  1,2 . . . . .  K (e) . . . ,  

as well as of the surface and volumetric integrals 

f aNsNia~, f aTmedNsa~, f qNsa~, f / N  s dr. (5) 
~.~e) 2~e) 5~) v(e) 

Here M is the number of all finite elements of the partitioning of region V; K (e) is the number of nodes of the e-th 

element of V (e). 

Solution of nonlinear system (3) is usually reduced to determination of a certain (perhaps iterative) 

sequence of systems of linear algebraic equations 

fTl (n+l )  (6) [Zlit Ji+l ={R}i ( i = 1 , 2  .... ) ,  

where {A}i and {R}i al~ the matrix and the r ight-hand side that are calculated for the tempera ture  in the i-th 
t,~l(n+ 1) iteration, ~ l , + l  is the temperature calculated in the next, i + 1-th iteration. The  matrices [Ali  have a band 

structure; they are symmetric and positive definite [7 ]. Effective methods (those of Kholetskii and  Kraut  [4, 51) 

are used for solving such systems. However, in each iteration, except for integrals (5), it is necessary to find 

numerically integrals (4), and this is involves considerable computer  time expenditures.  

In contrast to the above-described traditional finite-element method, in the variant of the finite-element 

method suggested in [61 the corresponding volumetric integrals are calculated only once, at the beginning of 

calculations. According to [6 ], the solution of heat conduction problem (1) by introducing Goodman and Kirchhoff 

substitutions [8 ] 

T T 
C= f c(x) p ( x )dx ,  A =  f ;t(x) dx 

T O T O 
(7) 

and using the finite-element method in combination with the Galerkin method is reduced to solution of the system 

of equations 
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with corresponding initial conditions. Here TO is a given constant with the dimensions of temperature; [P ] and [B ] 
are matrices of the N-th order (N is the number of all nodes of partitioning of region 1,9 whose elements are 
calculated by ensembling the magnitudes of the volumetric integrals 

f NsNdV, f grad N s grad NdV (e = 1, M ; s, i = l~(e)) ; (9) 

{t~} and {A} are vectors of the nodal values of the quantities C = OC/OT and A; {S} is the corresponding vector of 
the right-hand side of the equation. Eliminating vectors {C} and {A} from system (8) and using the relations [6, 
9] 

Tk 
Ck = c (T  D p (T/~) T/~, m/~ = f ;t (x) dx = x (Tk) Tk ,  

T O 
k = 1, N,  (10) 

we come to a system of equations for the vector {T} of the nodal values of the temperature: 

[P] [c] {?'} + ([B] [r] + [H]) IT} = {S} , (II) 

where [c] and [x] are diagonal matrices of the nodal values for the quantities c(T)p(T) and x(T) (the question of 
the existence of the function tc in an analytical form that satisfies the last equality in system (I0) is usually answered 

positively in practice, since the thermal conductivity coefficient 2 of many materials can be approximated, for 

example, by a finite system of polynomials for the temperature). 

Using approximation (2) for the temperature on the time interval [In, In+ I ], we obtain from system (I I) 
a system of algebraic equations similar to Eq. (3): 

where 

[a.l {r}<"+~) = {R.}, (12) 

[A.] = [P] [c]/Atn+l + w ([B] [x] + [H]) ; 

{R.} = ([P] [c]/Atn+ I --(I --co)<[B] [x] + [H])){T} (n) + {S}. 

If for system (12) we use the same scheme as for system (3), then, as for Eq. (6), we write 

(13) 

S TL (n+ 1) [Z. l i l  J'+~ ={R'} i  (i=0,1,2 . . . .  ) .  (14) 

The matrix [A. ]i has a band structure, but it is not symmetric. Therefore, less economic methods (in the sense of 

computer time expenditures) are suitable for numerical solution of system of linear algebraic equations (14) than 

for system (6). However, as we can see from expressions (13) and (9), in order to form the matrix [A.]i, it is 

sufficient to calculate volumetric integrals (9) only once (before the beginning of the iterative process), and in each 

iteration it is necessary to find only the values of the functions c(T), p(T) ,  and x(T)  at the nodal points of the 

finite-element grid. Consequently, to form the matrix [A. ]i, a smaller number of arithmetic operations is required 

than for forming the matrix [A ]i- 

We will evaluate the computer time expenditures in forming and solving systems of linear algebraic 

equations (6) and (I 4). The process of the formation of these systems of equations can be divided into three stages: 

1) calculation of volumetric integrals (4) and (9); 2) finding integrals (5); and 3) determination of the matrix 

elements of the system of linear algebraic equations and of the components of the vector in its right-hand side in 

terms of the calculated values of the volumetric and surface integrals, as well as the implementation of first-kind 

boundary conditions. We denote the computer time expenditures at each of the stages of the formation of systems 
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(6) and (14) by 31(A), t2(A), rs(A), and rI(A.), v2(A.), r3(A.), respectively. Then for the values of computer time 

expenditures in forming systems of linear algebraic equations (6) and (14) for Nit iterations, ~rform(A) and 

Vform(A.), we write the following expressions: 

Vform (.4) = Nit [31 (A) + 32 (A) + T 3 (A) l ,  

3form (A.) = 31 (A.) + Nit [t 2 (A.) + 33 (A.) I. 

(is) 

In order that the computer time expenditures in solving the heat-conduction problem by using scheme (11), 

i.e., 3(A.), be smaller than expenditures with the traditional scheme of the finite-element method, i.e., 3(A), the 

following condition must be satisfied 

3so t ( A . )  - 3so [ (A) < 3 t o ~  (it)  - 3for~ ( A . ) .  (16) 

Taking into account that rl(A) = 31(A.), r2(A ) = r2(A.), 33(A.) = rs(A) << rI(A) and using relations (15), we obtain 
from Eq. (16) 

rso I (A,) - 3so I (A) < (Nit - 1) r I (A). (17) 

We assume that for forming and solving systems of linear algebraic equations (6) and (14), effective algorithms 

are used in which the properties of the matrices are taken into account. The number of arithmetic operations carried 

out in solving a system of linear algebraic equations with a matrix of band structure by direct methods is 

proportional to Nfl 2 (13 is the half-width of the band of the matrix) [5 ]. In addition, in solving a system of linear 

algebraic equations with an asymmetric matrix almost twice as many operations are performed than in solving a 

system with a symmetric matrix. Therefore, we can write 

rso I (A.) -- rso I (A) = NitYlNfl 2 (Yl = const > 0).  (18) 

The quantity 31 (A) is proportional to M and to the number of computer operations K(e) r carried out in calculations 

of volumetric integrals (4), i.e., 

M 
~1 (A) =y2 ~ K(e)r (~'2=c~ > 0 ) .  

e=l 
(19) 

The constants 71 and 72 are independent of N and fl and have the dimension of time per computer operation. 

As a result of the substitution of expressions (18) and (19) into Eq. (17) with allowance for the relation 

Nit >> 1, we obtain the following limitation on the magnitude of the half-width of the matrix band r :  

M ] 
fl < ffcr = (~2/(Y1N)) Z (20) 

e=l 

From this it follows that since N and M are quantities of the same order of magnitude, the quantity ~cr is mainly 

affected only by the number of computer operations performed in calculations of volumetric integrals (4). Thus, if 

the half-width of the band fl in the matrix of the system of linear algebraic equations is smaller than a certain 

critical value flcr, the use of scheme (11) for solving the nonlinear nonstationary heat-conduction problem requires 

less computer time than the standard scheme of the finite-element method. 
To check this conclusion for an axially symmetric case, we carried out the following numerical experiment. 

When solving the heat-conduction problem using scheme (11) and the standard scheme of the finite-element 

method, we determined the ratio of the computer times T(A.)/r(A) for different values of the half-width of the band 

/3 in the matrix of the system of linear algebraic equations: 
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" ' [~ ") ")] c ( T ) - ~  = r -~r rA ( T ) - ~  + rTt ( T) -~z + f ( T, r, z, t) 

(0 ___ r, z _< l , 0 < t - - 5 . 3 ) ,  c ( T ) = l + c l T ,  2 ( T ) =  1 + J l i T ,  

OT OT 
T ( r , z , O )  = O, ~r  (O,z , t )  = ~ z  (r ,O, t )  = 0 ,  

OT(r, 1, t) ( r , t ) ,  ~IOT a ~ = q -~r (1, z, t) = - a (z, t)T (1, z, t ) ,  

f ( r ,  r, z, t) = c (7') f l  (r, z, t) - a (T) f2 (r, z, t) - -f3 (r, z, t ) ,  

-fl (r, z, t) = ar 2 (1.1 - r) (1 + pz2)/(1 + 02 + b,  (20 

f2 (r, z, t) = at [(4.4 - 9r) (1 + pz 2) + 2pr 2 (1.1 - r) 1/(1 + t ) ,  

/'3 (r, z, t) = R] (art /(1 + 0) 2 [(2.2 - 3r) 2 (1 + pz2) z + 

+ (2prz (1.1 - r))21, 

q(r,  t) = 2pF(r,  t) [1 +Jl I ((1 + p) F(r ,  t) + bt],  

a (z, t) = 8 (1 - b / H  (z, t)) (1 + 21tH (z, t ) ) ,  

F ( r , t ) =  ar 2(I .1 - r )  t / (1 + t ) ,  H ( z , t )  = 0 . 1 a ( l  + p z 2 ) / ( 1  + t) + b 

(c 1 = 0 . 3 ,  2 t = - 0 . 1 ,  a =  10, p = 3 ,  b = 0 . 2 )  

We call the quantity ~ = r(A,) /~(A)  the relative computer time expenditure. Both schemes were implemented in 

FORTRAN, and the calculations were performed on an AT/386 PC. The space rdomain was divided uniformly 

into M = m • m finite elements, and the time domain, into 30 intervals [tn, tn+l ] (n = 0, 1 . . . . .  29) with a variable 

length Atn that varied from Aq = 0.05 to At3o = 0.3; co = 2/3. For digitization in time, a two-step procedure [6 l 
was used over each interval [t,t, tn+l ]. The width of the matrix band in the system of linear algebraic equations 

was minimized using a subroutine for minimization of the width of the band for rectangular regions (these cases 

are marked by an asterisk in Table 1) and the algorithm of [10]. The volumetric and surface integrals were 

calculated by the Gauss quadrature formulas with three points of integration for each variable. We used the modified 

Kraut method [4 ] to solve system of linear algebraic equations (6) and the Gauss method with selection of the 

main element in the matrix columns [I 1 ] to solve system of linear algebraic equations (14). The numerical solutions 

of the problem obtained using each of the indicated schemes of the finite-element method were compared with the 

exact solution 

T (r, z, t) = ar 2 (1.1 - r) (1 + pz 2) t / (1 + t) + bt. 

Table 1 presents the relative computer times ~ for different variants of partitioning of the region 0 _< r, 

z <_- 1 into finite elements and different values of fl for the half-width of the matrix band in the system of linear 

algebraic equations. It is evident that ~ increases in proportional to r ,  reaching 1.0 at fl -- flcr "~ 47. This means that 
when fl < 47, the use of scheme (11) for solving axially symmetric nonlinear nonstat ionary heat-conduction 

problems is more advantageous in the sense of computer time expenditures as compared to the s tandard  scheme 

of the finite-element method. We note that in solving a number of practical problems, the half-width of the matrix 

band in the system of linear algebraic equations turns out to be smaller than flcr. So, in calculation of axially 
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TABLE I. Relative Computer Time Expenditures ~ for Different Values of the Half-Width fl of the Matrix Band in 
Resolving System of Linear Algebraic Equations 

M 

144" 

144 

400* 

324 

400 

15 

23 

23 

32 

35 

0.50 

0.57 

0.58 

0.73 

0.80 

M 

484 

576 

676 

841 

39 

42 

45 

50 

0.87 

0.94 

0.97 

1.03 

TABLE 2. Relative Error 6 in Numerical Solutions of Problem (21) Obtained Using Scheme (11) and the Standard 
Scheme of the Finite-Element Method 

Time, t 

0.05 

0.25 

0.40 

0.60 

0.80 

1.40 

scheme (11) 

13.10 

5.12 

3.14 

2.49 

1.86 

1.44 

6,% 
Time, t 

standard scheme of FEM 

13.10 

5.14 

3.18 

2.55 

1.93 

1.55 

scheme (11) 

1.75 

2.55 

3.55 

4.70 

5.30 

1.38 

1.14 

1.09 

1.06 

1.03 

6,% 

standard scheme of FEM 

1.50 

1.28 

1.26 

1.25 

1.24 

symmetric thermal fields in an installation for hot molding of powdered ceramic materials [9 ], the half-width of 

the matrix band was equal to 20, i.e., in the axially symmetric case the value tier is sufficient for ensuring the 
efficiency of scheme (1 I) when solving a number of practical problems of heat-conduction theory. 

Along with establishment of the efficiency of scheme (i I), it is also important to attain good accuracy of 

the numerical solution obtained. The values of the relative error 6 in the numerical solutions of problem (21) 

obtained by using scheme (11) and the standard scheme of the finite-element method are given in Table 2 for the 

case of M = 144 and fl -- 15. The error 6 was calculated in the norm of the space L2(IO [7]. It is seen that even 

on a rather coarse finite-element grid and with rather large time steps, scheme (11) has good accuracy compared 
to the standard scheme of the finite-element method. 

In conclusion we note that the considered example of heat-conduction problem (21) includes the 

temperature dependence of the thermophysical properties of the material, volumetric and surface heat sources, and 

heat transfer on the body surface, i.e., conditions that are often encoutered in practice in solving heat-conduction 

problems. Taking into account this fact and using the data of Tables 1 and 2, we may conclude that in an axially 

symmetric case the variant of the finite-element method suggested in I6 1 can be effective (in the sense of computer 

time expenditures) for solving a wide range of practical problems of heat-conduction theory. 

N O T A T I O N  

r, radius-vector of a point of spatial region V; t, time; c, p, 2, heat capacity, density, thermal conductivity 

coefficient; a, convective heat-transfer coefficient; Tin(r), initial temperature; Z1, Z2, Z3, nonintersecting parts of 

the external surface of the region V; ~o(r, t), given temperature distribution on the surface El; Tmed(r, t), 
temperature of the external medium; f, q, intensities of the volumetric and surface heat sources, respectively; Ns, 
form function; r, z, cylindrical coordinates. 
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